

AFRL-IF-RS-TR-2002-185
Final Technical Report
August 2002

REAL-TIME APPLICATION PERFORMANCE
STEERING AND ADAPTIVE CONTROL

University of Illinois

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D516

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-185 has been reviewed and is approved for publication

APPROVED:
 EDWARD DEPALMA
 Project Engineer

 FOR THE DIRECTOR:
 MICHAEL L. TALBERT, Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
AUGUST 2002

3. REPORT TYPE AND DATES COVERED
Final Jul 96 – Jun 99

4. TITLE AND SUBTITLE
REAL-TIME APPLICATION PERFORMANCE STEERING AND ADAPTIVE
CONTROL

6. AUTHOR(S)
Daniel A. Reed

5. FUNDING NUMBERS
C - F30602-96-C-0161
PE - 62301E
PR - H767
TA - 00
WU - 11

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinois
Department of Computer Science
Urbana Illinois 61801

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Project Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-185

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Edward DePalma/IFTB/(315) 330-3069/ Edward.DePalma@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
High-performance computing is rapidly expanding from single parallel systems to distributed collections of
heterogeneous sequential and parallel systems. The emerging applications are irregular, with complex, data dependent
execution behavior, and dynamic, with time varying resource demands. The objective of the Real-time Application
Performance Steering and Adaptive Control project is to replace ad hoc, post-mortem performance optimization with an
extensible, portable, and distributed software infrastructure for real-time adaptive control that dynamically optimizes the
performance of distributed applications. By integrating dynamic performance instrumentation and on-the-fly
performance data reduction with configurable, malleable resource management algorithms and a real-time adaptive
control mechanism, flexible runtime systems could automatically choose and configure resource management
algorithms based on application request patterns and observed system performance. Such an adaptive resource
management infrastructure can increase portability by allowing application and runtime libraries to adapt to disparate
hardware and software platforms and increases achieved performance by choosing and configuring those resource
management algorithms best matched to temporally varying application behavior. The Autopilot real-time adaptive
control infrastructure is based on this thesis. Autopilot provides a flexible set of performance sensors, decision
procedures, and policy actuators to realize adaptive control of applications and resource management policies on both
parallel and wide area distributed systems.

15. NUMBER OF PAGES
9

14. SUBJECT TERMS
AUOPILOT, Real-Time Adaptive Control, Resource Management Algorithms

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Contents

1 Overview.. 1

2 Project Approach.. 1

3 Autopilot Software Overview .. 3

4 Project Accomplishments and Impact .. 4

5 Software Availability.. 5

1

1 Overview
The scope of high-performance computing is rapidly expanding from single parallel
systems to distributed collections of heterogeneous sequential and parallel systems.
Moreover, emerging applications are irregular, with complex, data dependent execution
behavior, and dynamic, with time varying resource demands. In consequence, application
developers increasingly complain that even small changes in application structure can
lead to large changes in observed performance.

The performance sensitivity of current parallel and distributed systems is a direct
consequence of resource interaction complexity and the failure t recognize that resource
allocation and management must evolve with applications, becoming more flexible and
resilient to changing resource availability and resource demands. Currently, software
developers are forced to engage in a time consuming cycle of program development,
performance measurement, and tuning to create non-portable code that conforms to
parallel and distributed system idiosyncrasies.

Distressingly, the space of possible performance optimizations is large and non-convex,
and the best match of application and resource management technique is seldom obvious
a priori. Performance instrumentation and analysis provide the data necessary to
understand the causes for poor performance a posteriori, but alone they are insufficient to
adapt to temporally varying application resource demands and systems responses.
Because the interactions between application and system software change across
applications and during a single application’s execution, we believe runtime libraries and
resource management policies are needed that can adapt to rapidly changing application
behavior.

By integrating dynamic performance instrumentation and on-the-fly performance data
reduction with configurable, malleable resource management algorithms and a real-time
adaptive control mechanism, flexible runtime systems could automatically choose and
configure resource management algorithms based on application request patterns and
observed system performance. Such an adaptive resource management infrastructure can
increase portability by allowing application and runtime libraries to adapt to disparate
hardware and software platforms and increases achieved performance by choosing and
configuring those resource management algorithms best matched to temporally varying
application behavior.

Based on this thesis, we developed Autopilot, a real-time adaptive control infrastructure.
As described below, Autopilot provides a flexible set of performance sensors, decision
procedures, and policy actuators to realize adaptive control of applications and resource
management policies on both parallel and wide area distributed systems (computational
grids).

2 Project Approach
Emerging defense and civilian applications are parallel, distributed, and mobile, are
driven by real-time data sources, have time varying resource demands, and must
accommodate dynamically changing resource availability (e.g., due to failures or
resource contention). At present, optimizing the performance of these applications

2

requires multiple iterations of ad hoc measurement, post-mortem analysis, and platform-
specific tuning, limiting performance, resilience, portability, and adaptability.

The objective of this project is to replace ad hoc, post-mortem performance optimization
with an extensible, portable, and distributed software infrastructure for real-time adaptive
control that dynamically optimizes the performance of distributed applications. Via this
cross-platform optimization infrastructure, developers can build robust, distributed,
mobile applications that are resilient to changing resource availability.

To support adaptive control, we built and validated a C++ infrastructure called Autopilot
that can be used to create nimble applications that can dynamically reconfigure their
behavior to meet changing resource conditions. Autopilot embodies the following
features:

• Distributed performance sensors that can capture application and system
performance data and generate performance metrics.

• Software actuators that can enable and configure application behavior and
resource management policies.

• Decision procedures for selecting resource management policies and enabling
actuators based on observed application resource requests and the system
responses captured by performance sensors.

• Distributed name servers that support registration by remote sensors and
actuators and property-based requests for sensors and actuators by remote
clients.

• Sensor and actuator clients that interact wit remote sensors and actuators,
monitoring sensor data and issuing commands to actuators.

• Desktop performance visualization tools to provide analysts insight into the
interaction of application demands and resource management algorithm
response.

In this design, performance instrumentation sensors capture and compute quantitative
application and system performance metrics. This data is used by decision procedures to
choose and configure resource management policies via software actuators.

We tested the Autopilot infrastructure by developing an adaptive, high-performance I/O
toolkit called PPFSII 1. Our earlier measurements of application I/O patterns and file
system responses showed that achievable performance was strongly sensitive to small
changes in either access patterns or policies. By using Autopilot sensors to measure I/O
patterns, together with fuzzy logic rules for file system policy selection and actuators for
policy configuration, PPFS II yielded dramatic improvements to I/O performance.

We also validated Autopilot using a large-scale parallel application. This application,
developed by the DOE ASCI Center for the Simulation of Advanced Rockets (CSAR), is
written in Fortran 90 using MPI. Although the solid rocket burn requires only two
minutes, simulating 0.5 seconds of the burn is estimated to require 200 hours on a 128-

1 Primary funding for PPFS II development was from other sources.

3

node SGI Origin2000. With the high cost of rocket failures, optimizing this simulation is
of great practical importance.

We instrumented the CSAR code by inserting Autopilot sensors that compute (a) the
number of invocations and time spent in each procedure of the code’s call graph and (b)
capture data on the execution of logical code regions (e.g., initialization, fluids, solids,
and output). We then combined this sensor data with actuators to control remote
performance data capture in real-time. This integrated, real-time performance
visualization and control experiment represents a major validation of Autopilot and
provides functionality not present in other distributed/parallel performance measurement
toolkits.

3 Autopilot Software Overview
Autopilot is implemented as a set of C++ classes and is built atop the DARPA-funded
Globus wide-area computing toolkit. Globus provides a shared address space across local
and wide-area networks and enables interprocess, intraprocess, and intermachine data
sharing. Globus also supports heterogeneity, allowing a single computation to use
multiple communication protocols, executables, and programming models.

Using Globus as a base, the Autopilot toolkit defines sensors, actuators, decision
procedures, and sensor/actuator managers, all accessible via Globus “global pointers:”
see Figure 1. Sensors are low-overhead routines designed to capture real-time
performance data from distributed software components and can be extended via user-
defined functions to process raw performance data before transmission (e.g., computing a
profile from event trace data). In turn, actuators define a mechanism for implementing
control functions in software modules (e.g., changing policies or policy parameters in

4

response to remote decision procedures). Sensor/actuator managers can be viewed as

access points for sensors and actuators.

Decision procedures implement fuzzy logic control of distributed software. They accept
and evaluate real-time data from one or more sensors and generate actuator outputs in
response. Our fuzzy logic toolkit is based on a subset of the publicly available ComNets
Class Library (CNCL), with modifications and extensions for software control.

Using sensors and actuators embedded in distributed code, one can adaptively control
software behavior either interactively or via fuzzy logic decision procedures. Both
decision procedures and interactive systems can query managers with sensor and actuator
attributes and retrieve global points to all sensors and actuators that match the specified
attributes. Autopilot’s Java-based Autodriver desktop interface, shown in Figure 2, allows
users to attach dynamically to sensors and actuators, display time-varying sensor data,
and change actuator values.

4 Project Accomplishments and Impact
The Autopilot research and resulting toolkit are recognized as major components of the
nascent, multi-agency computational grid program. In particular, the Autopilot toolkit is a
targeted technology of the National Computational Science Alliance’s Partnership for an
Advanced Computational Infrastructure (PACI) focus on wide-area computation and
distributed collaboration. The Autopilot software targets optimization of computation

5

behavior when (a) executing on nation-scale distributed resources via the Globus toolkit
and (b) using high-performance I/O systems on PC clusters.

Autopilot is also a major component of the DoE nuclear weapons stockpile stewardship
program, via the Accelerated Strategic Computing initiative (ASCI). In particular,
Autopilot technology is a part of DoE high-performance computing software research and
development efforts. Similarly, our PPFS II adaptive I/O library, based on Autopilot,
targets both analysis of I/O patterns in ASCI codes and dynamic optimization of these I.O
patterns. Working wit LLNL< LANL, and SNL, we are instrumenting laboratory codes
and ASCI I/O libraries and developing adaptive I/O policies that support patterns found
in these codes and libraries. In addition, lessons from PPFS II and Autopilot are helping
drive creation of data and visualization corridors for the ASCI program. These corridors
will support distributed analysis and visualization of petabyte data sets.

Autopilot is the basis for wide-area network tuning and optimization with the Globus
toolkit, itself the base for the multiagency (NSF, NASA, DoE, and DARPA)
computational grid. As part of the DoE NGI effort, we will be further integrating
Autopilot and Globus for adaptive network control.

We also are working closely with contractors for the DoD High-Performance Computing
Modernization Program (HPCCMP)2 who are deploying our performance tools at DoD
Major Shared Resource Centers (e.g. at CEWES) and using them to help DoD application
Developers optimize their codes.

5 Software Availability
During its lifetime, the project released two major versions of the Autopilot software
toolkit. Information on how to obtain the current version of the Autopilot software can be
obtained via the World Wide Web at:

 http://www-pablo.cs.uiuc.edu/Projects/Autopilot/AutopilotOverview.htm

2 See http://www.hpcmo.hpc.mil for details.

